Robert Romeo Robert Romeo

Carbon Fiber Reinforced Polymer (CFRP) Optics Quality Assessment for Lightweight Deployable Optics

The Naval Research Laboratory and Composite Mirror Applications (CMA) have been working together for several years on the development of Carbon Fiber Reinforced Polymer (CFRP) optics and telescopes. We have documented the potential advantages of this technology in several other publications, including structural, thermal and weight advantages over traditional steel and glass optical systems. In this paper we present results of a battery of optical tests done on various CFRP replicated mirrors. Our goal is to demonstrate not only the optical quality of such mirrors but also their reproducibility and stability. We show test results on a sample of four mirrors. We performed extensive optical tests and also stability and repeatability tests. These tests are geared towards proving the use of this technology for a variety of optical applications including use in our CFRP telescopes.

Read More
Robert Romeo Robert Romeo

Replicated carbon fiber RICH mirror for AMS-02

Presented are results of a fabrication program to produce the Ring Imaging Cherenkov, RICH, mirror for the Alpha Magnetic Spectrometer, AMS-02, which is to be placed on the International Space Station. Composite Mirror Applications, Inc., CMA, in Tucson AZ was contracted by Carlo Gavazzi Space, CGS, to produce a conical mirror 1.3m diameter 0.5m in height, from high modulus carbon fiber, flight qualified composite materials, having an optical surface on the inside of the cone. The flight model mirror was completed to specification, yielding nearly 2m2 of replicated optical surface area and weighs 8 kg. CMA measured the surface roughness and slope errors and the mirror dimensions were measured using a CMM at The University of Arizona’s Instrument Shop. The results show the mirror meets conformance to the required specifications. The RICH mirror is currently undergoing flight testing and integration.

Read More
Robert Romeo Robert Romeo

Development of Lightweight Carbon-Fiber Mirrors for the RICH 1 Detector of LHCb

The design, manufacture and characterization of lightweight carbon-fiber spherical converging mirrors for the RICH 1 Cherenkov detector of the LHCb experiment at CERN are described. The mirrors need to be lightweight to minimize the material for traversing particles and fluorocarbon-compatible to avoid degradation in the C4 F10 gas radiator of RICH 1. Four large-sized carbon-fiber mirrors covering a total surface area of ∼2m 2 were installed in RICH 1 in July 2007. The mirrors have a radius of curvature of ∼2700 mm, a high reflectivity of ∼90% in the 200-600 nm wavelength band, a low areal density of ∼5 kg/m2 equivalent to ∼1.2% of a radiation length. Results of the radiation and fluorocarbon testing of the mirror prototypes are also reported.

Read More